commit 1424315c6da0602c6584ca2f2d3a3d06eb364d4f
parent 6c8ced4212231d97bd0301306a245ebdb26e1cd5
Author: Vincent Forest <vincent.forest@meso-star.com>
Date: Mon, 17 Apr 2023 11:43:33 +0200
stardis: update the validation page
List the 3 sections of the page in the introduction (move the SYRTHES
cross-comparisons to its own section) and correct a spelling mistake in
the caption of the SYRTHES cross-comparison figures.
Diffstat:
3 files changed, 33 insertions(+), 23 deletions(-)
diff --git a/stardis/TprofX.png b/stardis/TprofX.png
@@ -1 +1 @@
-#$# git-wad fbb4d1319a2bb75d23f02dc0cb7b49a2d76526d53fd37de7d9d10ae2276539bf 24132
-\ No newline at end of file
+#$# git-wad cfea9591939e56ae82d915fab76f0023aeac7073d75b768da8b06cd611632e4b 24230
+\ No newline at end of file
diff --git a/stardis/TprofY.png b/stardis/TprofY.png
@@ -1 +1 @@
-#$# git-wad 563b52a2dc809ef8ce7c793ed0e848c37391fbb46693ebb7a09f09f160a6a977 24249
-\ No newline at end of file
+#$# git-wad 5ea64a3aa19fb5ab00990e4625536c0dbbb67c2f927f6ebb211516b60a19c2aa 24342
+\ No newline at end of file
diff --git a/stardis/validation.html.in b/stardis/validation.html.in
@@ -1,11 +1,21 @@
<h1>Validation</h1>
<p>In this webpage, we provide the references to validations of the Stardis
-code and the theoretical framework it is based on. We first present the
-validations against analytical models and then against finite differences
-codes.</p>
+code and the theoretical framework it is based on.</p>
+<ol>
+ <li>We first present <a href="#analytical">validations against analytical
+ models</a>, which are directly provided in Stardis as non-regression
+ tests.</li>
+ <li>We then <a href="#papers">refer to scientific papers</a> in which Monte
+ Carlo algorithms are compared to deterministic solvers on non trivial
+ configurations.</li>
+ <li>Finally, we present <a href="#SYRTHES">a validation test case of
+ SYRTHES</a>, the thermal code developed by <i>Électricité de France</i>,
+ which provides both a finite element solver and a Monte Carlo solver powered
+ by Stardis.</li>
+</ol>
-<h2>Comparison against analytical results</h2>
+<h2 id="analytical">Comparison against analytical results</h2>
<p>Stardis provides comparisons against analytical solutions. These
non-regression tests are available in the <code>src/</code> directory of <a
@@ -21,25 +31,25 @@ following tests:</p>
href="https://gitlab.com/meso-star/stardis-solver/-/blob/master/src/test_sdis_conducto_radiative.c">test_sdis_conducto_radiative.c</a>
validates the steady resolution of the coupled conduction and radiative
transfer in a solid surrounded by two different fluids (left/right
- faces);</li>
+ faces).</li>
<li><a
href="https://gitlab.com/meso-star/stardis-solver/-/blob/master/src/test_sdis_convection_non_uniform.c">test_sdis_convection_non_uniform.c</a>
validates the transient resolution of the convection for a fluid inside a cube
- with faces of different known temperatures;</li>
+ with faces of different known temperatures.</li>
<li><a
href="https://gitlab.com/meso-star/stardis-solver/-/blob/master/src/test_sdis_transcient.c">test_sdis_transient.c</a>
- validates the transient resolution of conduction in nested cubes;</li>
+ validates the transient resolution of conduction in nested cubes.</li>
<li><a
href="https://gitlab.com/meso-star/stardis-solver/-/blob/master/src/test_sdis_solve_boundary.c">test_sdis_solve_boundary.c</a>
validates the steady computation of the boundary temperature on a solid cube
- interfaced with a fluid with known temperature;</li>
+ interfaced with a fluid with known temperature.</li>
<li><a
href="https://gitlab.com/meso-star/stardis-solver/-/blob/master/src/test_sdis_solid_random_walk_robustness.c">test_random_walk_robustness.c</a>
validates the random walk in a solid with / without a source term in complex
- geometry;</li>
+ geometry.</li>
</ul>
-<h2>Cross-comparison against deterministic solvers</h2>
+<h2 id="papers">Cross-comparison against deterministic solvers</h2>
<p>Stardis is also validated against usual deterministic codes, on more complex
geometries where no analytical solution exists. We list here the academic
@@ -57,7 +67,7 @@ configuration and mention the code used for comparison.</p>
<li>Solid with fluid cavities</li>
<li>Coupled conduction, convection (perfectly mixed cavity) and radiation;
homogeneous coefficients</li>
- <li>Stationnary state</li>
+ <li>Stationary state</li>
<li>Validation of the propagator</li>
</ul></li>
@@ -74,7 +84,7 @@ configuration and mention the code used for comparison.</p>
<li>Poiseille duct or Kelvin cells</li>
<li>Coupled conduction, convection (with advection) and radiative transfer;
homogeneous coefficients</li>
- <li>Stationnary state</li>
+ <li>Stationary state</li>
</ul></li>
<li><a href="https://hal.science/hal-02096305v1">Caliot et al.</a> -
@@ -86,7 +96,7 @@ configuration and mention the code used for comparison.</p>
</li>
<li>Kelvin cells</li>
<li>Coupled conduction and radiative transfer</li>
- <li>Stationnary state</li>
+ <li>Stationary state</li>
</ul></li>
<li><a href="https://hal.science/hal-04059892">Retailleau et al.</a> -
@@ -96,17 +106,17 @@ configuration and mention the code used for comparison.</p>
<li>Validation against finite differences</li>
<li>Slab with Robin conditions</li>
<li>Coupled conduction, convection (perfectly mixed cell) and radiative transfer</li>
- <li>unstationnary state</li>
+ <li>Un-stationary state</li>
</ul></li>
</ol>
-<h3>Stardis in SYRTHES</h3>
+<h2 id="SYRTHES">Stardis in SYRTHES</h2>
<p>Stardis is used in the <a
href="https://www.edf.fr/en/the-edf-group/inventing-the-future-of-energy/r-d-global-expertise/our-offers/simulation-softwares/syrthes">SYRTHES</a>
-code of the French electric company Électricité de France. Both deterministic
-and stochastic resolutions can therefore be compared on the exact same CAD
-input. Here we provide the validation on one stationnary test case of
+code of the French electric company <i>Électricité de France</i>. Both
+deterministic and stochastic resolutions can therefore be compared on the exact
+same CAD input. Here we provide the validation on one stationary test case of
conduction inside a cube (figure 1). Both the finite elements and the Monte
Carlo (using Stardis) resolutions are compared to the theoretical temperature
(figure 2).</p>
@@ -134,7 +144,7 @@ Carlo (using Stardis) resolutions are compared to the theoretical temperature
<img src="TprofX.png" alt="ProfY" style="width: 45%">
</a>
<div class="caption">
- <b>Figure 2:</b> Validation of the Finite elements solver and the Monte Carlo
+ <b>Figure 2:</b> Validation of the Finite element solver and the Monte Carlo
solver (<i>i.e.</i> Stardis) of SYRTHES against the analytical solution of
the test case presented in figure 1. Both curves are computed at steady state
at probe positions varying along the X axis (left) or the Y axis (right).