stardis-solver

Solve coupled heat transfers
git clone git://git.meso-star.fr/stardis-solver.git
Log | Files | Refs | README | LICENSE

test_sdis_convection_non_uniform.c (13189B)


      1 /* Copyright (C) 2016-2025 |Méso|Star> (contact@meso-star.com)
      2  *
      3  * This program is free software: you can redistribute it and/or modify
      4  * it under the terms of the GNU General Public License as published by
      5  * the Free Software Foundation, either version 3 of the License, or
      6  * (at your option) any later version.
      7  *
      8  * This program is distributed in the hope that it will be useful,
      9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
     11  * GNU General Public License for more details.
     12  *
     13  * You should have received a copy of the GNU General Public License
     14  * along with this program. If not, see <http://www.gnu.org/licenses/>. */
     15 
     16 #include "sdis.h"
     17 #include "test_sdis_utils.h"
     18 
     19 #include <rsys/double3.h>
     20 #include <rsys/math.h>
     21 
     22 /*
     23  * The scene is composed of an unit fluid cube/square whose temperature is
     24  * unknown. The convection coefficient with the surrounding solid is H
     25  * everywhere the temperature of the -/+X, -/+Y and -/+Z faces are fixed to T0
     26  * and T1, T2, T3, T4 and T5, respectively.  This test computes the temperature
     27  * of the fluid Tf at an observation time t. This temperature is equal to:
     28  *
     29  *    Tf(t) = Tf(0) * e^(-nu*t) + Tinf*(1-e^(-nu*t))
     30  *
     31  *    nu = (Sum_{i=0..5}(H*Si)) / (RHO*CP*V)
     32  *    Tinf = (Sum_{i=0..5}(H*Si*Ti) / (Sum_{i=0..5}(H*Si));
     33  *
     34  * with Si surface of the faces (i.e. one), V the volume of the cube (i.e.
     35  * one), RHO the volumic mass of the fluid and CP its calorific capacity.
     36  *
     37  *           3D                  2D
     38  *
     39  *             (1,1,1)             (1,1)
     40  *       +---------+           +-----T3----+
     41  *      /'  T3    /|T4         |           |
     42  *     +---------+ |           |   H _\    |
     43  *     | ' H _\  |T1          T0    / /    T1
     44  *     |T0  / /  | |           |    \__/   |
     45  *     | +..\__/.|.+           |           |
     46  *   T5|,  T2    |/            +-----------+
     47  *     +---------+           (0,0)
     48  * (0,0,0)
     49  */
     50 
     51 #define N 100000 /* #realisations */
     52 
     53 #define Tf_0 280.0
     54 
     55 #define T0 300.0
     56 #define T1 310.0
     57 #define T2 320.0
     58 #define T3 330.0
     59 #define T4 340.0
     60 #define T5 350.0
     61 
     62 #define HC0 100.0
     63 #define HC1 30.0
     64 #define HC2 3020.0
     65 #define HC3 7300.0
     66 #define HC4 3400.0
     67 #define HC5 50.0
     68 
     69 #define RHO 25.0
     70 #define CP 2.0
     71 
     72 /*******************************************************************************
     73  * Media
     74  ******************************************************************************/
     75 static double
     76 fluid_get_temperature
     77   (const struct sdis_rwalk_vertex* vtx, struct sdis_data* is_stationary)
     78 {
     79   CHK(vtx != NULL);
     80   CHK(is_stationary != NULL);
     81   if(*((int*)sdis_data_cget(is_stationary))) {
     82     return SDIS_TEMPERATURE_NONE;
     83   } else {
     84     return vtx->time <= 0 ? Tf_0 : SDIS_TEMPERATURE_NONE;
     85   }
     86 }
     87 
     88 static double
     89 fluid_get_volumic_mass
     90   (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
     91 {
     92   (void)data;
     93   CHK(vtx != NULL);
     94   return RHO;
     95 }
     96 
     97 static double
     98 fluid_get_calorific_capacity
     99   (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
    100 {
    101   (void)data;
    102   CHK(vtx != NULL);
    103   return CP;
    104 }
    105 
    106 /*******************************************************************************
    107  * Interface
    108  ******************************************************************************/
    109 struct interf {
    110   double temperature;
    111   double hc;
    112 };
    113 
    114 static double
    115 interface_get_temperature
    116   (const struct sdis_interface_fragment* frag, struct sdis_data* data)
    117 {
    118   const struct interf* interf = sdis_data_cget(data);
    119   CHK(frag && data);
    120   return interf->temperature;
    121 }
    122 
    123 static double
    124 interface_get_convection_coef
    125   (const struct sdis_interface_fragment* frag, struct sdis_data* data)
    126 {
    127   const struct interf* interf = sdis_data_cget(data);
    128   CHK(frag && data);
    129   return interf->hc;
    130 }
    131 
    132 static double
    133 interface_get_emissivity
    134   (const struct sdis_interface_fragment* frag,
    135    const unsigned source_id,
    136    struct sdis_data* data)
    137 {
    138   (void)source_id;
    139   CHK(frag && data);
    140   return 0;
    141 }
    142 
    143 static double
    144 interface_get_specular_fraction
    145   (const struct sdis_interface_fragment* frag,
    146    const unsigned source_id,
    147    struct sdis_data* data)
    148 {
    149   (void)source_id;
    150   CHK(frag && data);
    151   return 0;
    152 }
    153 
    154 static struct sdis_interface*
    155 create_interface
    156   (struct sdis_device* dev,
    157    struct sdis_medium* front,
    158    struct sdis_medium* back,
    159    const struct sdis_interface_shader* interf_shader,
    160    const double temperature,
    161    const double hc)
    162 {
    163   struct sdis_data* data;
    164   struct sdis_interface* interf;
    165   struct interf* interf_props;
    166 
    167   OK(sdis_data_create(dev, sizeof(struct interf), ALIGNOF(struct interf),
    168     NULL, &data));
    169   interf_props = sdis_data_get(data);
    170   interf_props->temperature = temperature;
    171   interf_props->hc = hc;
    172   OK(sdis_interface_create(dev, front, back, interf_shader, data, &interf));
    173   OK(sdis_data_ref_put(data));
    174   return interf;
    175 }
    176 
    177 /*******************************************************************************
    178  * Test
    179  ******************************************************************************/
    180 int
    181 main(int argc, char** argv)
    182 {
    183   struct sdis_mc T = SDIS_MC_NULL;
    184   struct sdis_mc mc_time = SDIS_MC_NULL;
    185   struct sdis_device* dev = NULL;
    186   struct sdis_medium* fluid = NULL;
    187   struct sdis_medium* solid = NULL;
    188   struct sdis_data* is_stationary = NULL;
    189   struct sdis_interface* interf_T0 = NULL;
    190   struct sdis_interface* interf_T1 = NULL;
    191   struct sdis_interface* interf_T2 = NULL;
    192   struct sdis_interface* interf_T3 = NULL;
    193   struct sdis_interface* interf_T4 = NULL;
    194   struct sdis_interface* interf_T5 = NULL;
    195   struct sdis_scene* box_scn = NULL;
    196   struct sdis_scene* square_scn = NULL;
    197   struct sdis_estimator* estimator = NULL;
    198   struct sdis_estimator* estimator2 = NULL;
    199   struct sdis_green_function* green = NULL;
    200   struct sdis_scene_create_args scn_args = SDIS_SCENE_CREATE_ARGS_DEFAULT;
    201   struct sdis_fluid_shader fluid_shader = DUMMY_FLUID_SHADER;
    202   struct sdis_solid_shader solid_shader = DUMMY_SOLID_SHADER;
    203   struct sdis_interface_shader interf_shader = DUMMY_INTERFACE_SHADER;
    204   struct sdis_solve_probe_args solve_args = SDIS_SOLVE_PROBE_ARGS_DEFAULT;
    205   struct sdis_interface* box_interfaces[12/*#triangles*/];
    206   struct sdis_interface* square_interfaces[4/*#segments*/];
    207   double ref;
    208   double Tinf;
    209   double nu;
    210   size_t nreals;
    211   size_t nfails;
    212   int i;
    213   (void)argc, (void)argv;
    214 
    215   OK(sdis_device_create(&SDIS_DEVICE_CREATE_ARGS_DEFAULT, &dev));
    216 
    217   OK(sdis_data_create(dev, sizeof(int), ALIGNOF(int), NULL, &is_stationary));
    218   *((int*)sdis_data_get(is_stationary)) = 0;
    219 
    220   /* Create the fluid medium */
    221   fluid_shader.temperature = fluid_get_temperature;
    222   fluid_shader.calorific_capacity = fluid_get_calorific_capacity;
    223   fluid_shader.volumic_mass = fluid_get_volumic_mass;
    224   OK(sdis_fluid_create(dev, &fluid_shader, is_stationary, &fluid));
    225 
    226   /* Create the solid_medium */
    227   OK(sdis_solid_create(dev, &solid_shader, NULL, &solid));
    228 
    229   /* Setup the interface shader */
    230   interf_shader.convection_coef = interface_get_convection_coef;
    231   interf_shader.front.temperature = interface_get_temperature;
    232   interf_shader.front.emissivity = interface_get_emissivity;
    233   interf_shader.front.specular_fraction = interface_get_specular_fraction;
    234 
    235   /* Create the interfaces */
    236   interf_shader.convection_coef_upper_bound = HC0;
    237   interf_T0 = create_interface(dev, fluid, solid, &interf_shader, T0, HC0);
    238   interf_shader.convection_coef_upper_bound = HC1;
    239   interf_T1 = create_interface(dev, fluid, solid, &interf_shader, T1, HC1);
    240   interf_shader.convection_coef_upper_bound = HC2;
    241   interf_T2 = create_interface(dev, fluid, solid, &interf_shader, T2, HC2);
    242   interf_shader.convection_coef_upper_bound = HC3;
    243   interf_T3 = create_interface(dev, fluid, solid, &interf_shader, T3, HC3);
    244   interf_shader.convection_coef_upper_bound = HC4;
    245   interf_T4 = create_interface(dev, fluid, solid, &interf_shader, T4, HC4);
    246   interf_shader.convection_coef_upper_bound = HC5;
    247   interf_T5 = create_interface(dev, fluid, solid, &interf_shader, T5, HC5);
    248 
    249   /* Release the media */
    250   OK(sdis_medium_ref_put(solid));
    251   OK(sdis_medium_ref_put(fluid));
    252 
    253   /* Map the interfaces to their box triangles */
    254   box_interfaces[0] = box_interfaces[1] = interf_T5; /* Front */
    255   box_interfaces[2] = box_interfaces[3] = interf_T0; /* Left */
    256   box_interfaces[4] = box_interfaces[5] = interf_T4; /* Back */
    257   box_interfaces[6] = box_interfaces[7] = interf_T1; /* Right */
    258   box_interfaces[8] = box_interfaces[9] = interf_T3; /* Top */
    259   box_interfaces[10]= box_interfaces[11]= interf_T2; /* Bottom */
    260 
    261   /* Map the interfaces to their square segments */
    262   square_interfaces[0] = interf_T2; /* Bottom */
    263   square_interfaces[1] = interf_T0; /* Left */
    264   square_interfaces[2] = interf_T3; /* Top */
    265   square_interfaces[3] = interf_T1; /* Right */
    266 
    267   /* Create the box scene */
    268   scn_args.get_indices = box_get_indices;
    269   scn_args.get_interface = box_get_interface;
    270   scn_args.get_position = box_get_position;
    271   scn_args.nprimitives = box_ntriangles;
    272   scn_args.nvertices = box_nvertices;
    273   scn_args.context = box_interfaces;
    274   OK(sdis_scene_create(dev, &scn_args, &box_scn));
    275 
    276   /* Create the square scene */
    277   scn_args.get_indices = square_get_indices;
    278   scn_args.get_interface = square_get_interface;
    279   scn_args.get_position = square_get_position;
    280   scn_args.nprimitives = square_nsegments;
    281   scn_args.nvertices = square_nvertices;
    282   scn_args.context = square_interfaces;
    283   OK(sdis_scene_2d_create(dev, &scn_args, &square_scn));
    284 
    285   /* Release the interfaces */
    286   OK(sdis_interface_ref_put(interf_T0));
    287   OK(sdis_interface_ref_put(interf_T1));
    288   OK(sdis_interface_ref_put(interf_T2));
    289   OK(sdis_interface_ref_put(interf_T3));
    290   OK(sdis_interface_ref_put(interf_T4));
    291   OK(sdis_interface_ref_put(interf_T5));
    292 
    293   solve_args.nrealisations = N;
    294   solve_args.position[0] = 0.25;
    295   solve_args.position[1] = 0.25;
    296   solve_args.position[2] = 0.25;
    297 
    298   /* Test in 3D for various time values. */
    299   nu = (HC0 + HC1 + HC2 + HC3 + HC4 + HC5) / (RHO * CP);
    300   Tinf = (HC0 * T0 + HC1 * T1 + HC2 * T2 + HC3 * T3 + HC4 * T4 + HC5 * T5)
    301     / (HC0 + HC1 + HC2 + HC3 + HC4 + HC5);
    302   printf(">>> Temperature of the box at (%g %g %g)\n\n",
    303     SPLIT3(solve_args.position));
    304   FOR_EACH(i, 0, 5) {
    305     double time = i ? (double)i / nu : INF;
    306     solve_args.time_range[0] = time;
    307     solve_args.time_range[1] = time;
    308 
    309     ref = Tf_0 * exp(-nu * time) + Tinf * (1 - exp(-nu * time));
    310 
    311     *((int*)sdis_data_get(is_stationary)) = IS_INF(time);
    312 
    313     /* Solve in 3D */
    314     OK(sdis_solve_probe(box_scn, &solve_args, &estimator));
    315     OK(sdis_estimator_get_realisation_count(estimator, &nreals));
    316     OK(sdis_estimator_get_failure_count(estimator, &nfails));
    317     CHK(nfails + nreals == N);
    318     OK(sdis_estimator_get_temperature(estimator, &T));
    319     OK(sdis_estimator_get_realisation_time(estimator, &mc_time));
    320     printf("Temperature at %g = %g ~ %g +/- %g\n", time, ref, T.E, T.SE);
    321     printf("Time per realisation (in usec) = %g +/- %g\n", mc_time.E, mc_time.SE);
    322     if(nfails)
    323       printf("#failures = %lu/%lu\n", (unsigned long)nfails,(unsigned long)N);
    324     CHK(eq_eps(T.E, ref, T.SE * 3));
    325 
    326     OK(sdis_solve_probe_green_function(box_scn, &solve_args, &green));
    327     OK(sdis_green_function_solve(green, &estimator2));
    328     check_green_function(green);
    329     check_estimator_eq(estimator, estimator2);
    330     check_green_serialization(green, box_scn);
    331     OK(sdis_estimator_ref_put(estimator2));
    332     OK(sdis_green_function_ref_put(green));
    333 
    334     OK(sdis_estimator_ref_put(estimator));
    335     printf("\n");
    336   }
    337 
    338   /* Test in 2D for various time values. */
    339   nu = (HC0 + HC1 + HC2 + HC3) / (RHO * CP);
    340   Tinf = (HC0 * T0 + HC1 * T1 + HC2 * T2 + HC3 * T3) / (HC0 + HC1 + HC2 + HC3);
    341   printf(">>> Temperature of the square at (%g %g)\n\n",
    342     SPLIT2(solve_args.position));
    343   FOR_EACH(i, 0, 5) {
    344     double time = i ? (double)i / nu : INF;
    345 
    346     solve_args.time_range[0] = time;
    347     solve_args.time_range[1] = time;
    348 
    349     ref = Tf_0 * exp(-nu * time) + Tinf * (1 - exp(-nu * time));
    350 
    351     *((int*)sdis_data_get(is_stationary)) = IS_INF(time);
    352 
    353     OK(sdis_solve_probe(square_scn, &solve_args, &estimator));
    354     OK(sdis_estimator_get_realisation_count(estimator, &nreals));
    355     OK(sdis_estimator_get_failure_count(estimator, &nfails));
    356     CHK(nfails + nreals == N);
    357     OK(sdis_estimator_get_temperature(estimator, &T));
    358     OK(sdis_estimator_get_realisation_time(estimator, &mc_time));
    359     printf("Temperature at %g = %g ~ %g +/- %g\n", time, ref, T.E, T.SE);
    360     printf("Time per realisation (in usec) = %g +/- %g\n", mc_time.E, mc_time.SE);
    361     if(nfails)
    362       printf("#failures = %lu/%lu\n", (unsigned long)nfails,(unsigned long)N);
    363     CHK(eq_eps(T.E, ref, T.SE * 3));
    364 
    365     OK(sdis_solve_probe_green_function(square_scn, &solve_args, &green));
    366     OK(sdis_green_function_solve(green, &estimator2));
    367     check_green_function(green);
    368     check_estimator_eq(estimator, estimator2);
    369     check_green_serialization(green, square_scn);
    370     OK(sdis_estimator_ref_put(estimator2));
    371     OK(sdis_green_function_ref_put(green));
    372 
    373     OK(sdis_estimator_ref_put(estimator));
    374     printf("\n");
    375   }
    376 
    377   OK(sdis_scene_ref_put(box_scn));
    378   OK(sdis_scene_ref_put(square_scn));
    379   OK(sdis_device_ref_put(dev));
    380   OK(sdis_data_ref_put(is_stationary));
    381 
    382   CHK(mem_allocated_size() == 0);
    383   return 0;
    384 }
    385